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PROBABILITY AND STATISTICS 

A-1.1  Key Concepts 

During a risk analysis, various numbers called probabilities are estimated and used to describe 

our degree of belief in the likelihood of events in order to characterize the risks associated with 

those events. Probability is a measure of the likelihood that an event will occur. The 

mathematical theory of probability tells us how to apply the numbers in a logical and consistent 

manner. Facilitators and analysts are responsible for defining what is being estimated and 

ensuring that the probability estimates represent what the events they are intended to describe. 

Do probabilities model a process that is random or do they describe the state of knowledge? In 

the case of a flood frequency curve, the answer is both. The chance of exceeding the 100-year 

flood elevation this year is typically modeled as a random process described by the frequency 

curve. The likelihood that the 100-year flood elevation will be within a particular range is 

typically modeled as a degree of belief described by the uncertainty about the frequency curve. 

This separation of the probabilities based on the source and nature of the uncertainty exists only 

in the risk model and not in the real world. The occurrence of floods is not necessarily random. 

We choose to model them as a random process because we don’t have (and perhaps can’t obtain) 

sufficient knowledge to predict long-term weather patterns at specific locations. Modeling flood 

occurrences as a random process might provide a more convenient or improved understanding of 

risk compared with attempting to model the knowledge uncertainty in weather patterns. 

Separation of uncertainty in a risk analysis is an important modeling decision. Probabilities 

associated with randomness are statements about frequency of occurrence in time or space. 

Probabilities associated with knowledge uncertainty are statements about our degrees of belief 

regarding a particular claim.   

Probabilities can be estimated using a variety of techniques. Statistical estimates can be made 

based on past observations using empirical data. Analytical models based on physical processes 

and reasoning from first principles can be applied. Expert opinions can be elicited to obtain 

probabilities in cases where data or models are incomplete. In practice, the risk analyst should 
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combine all of these methods when feasible to support robust probability estimates. Judgment 

should always be applied as an overlay to these methods to express our degree of belief in the 

adequacy of the data, methods, parameters, and models.  

A-1.2   Deductive and Inductive Logic 

Critical thinking is the application of reason to evaluate the extent to which a claim is believed to 

be true. It requires a “disciplined process of actively and skillfully conceptualizing, applying, 

analyzing, synthesizing, and/or evaluating information gathered from, or generated by, 

observation, experience, reflection, reasoning, or communication, as a guide to belief and 

action.” (Scriven and Paul, 1987) All levels of decision making are impacted by critical thinking. 

In order to make better decisions, we must assess our beliefs and the beliefs of others. 

Questioning the beliefs and rationale of others is an essential element of the critical thinking 

process and should not be viewed as a personal criticism. The wise analyst and decision maker is 

one who knows how to identify and minimize errors and biases in critical thinking to support 

more credible decisions. 

Logical arguments derive from the process of evaluating whether or not a claim is believed to be 

true. These arguments can be characterized as either deductive or inductive. Deductive 

arguments arrive at conclusions that are guaranteed to be true given certain premises. Inductive 

arguments support conclusions that are likely or probable based on the supporting evidence. In 

practice, actual truth is a challenging matter to assess. How do you know for certain that other 

countries in the world exist? Have you visited them? Is the map correct? Is the geography teacher 

correct? 

Deductive arguments are valid when the conclusions necessarily follow, if the premises are 

assumed to be true. A valid deduction does not require the premises to actually be true. This is a 

potential source of disagreement among rational people because the truth of a deduction is 

independent of its validity. Given a premise that all dams reduce flood risk and that John Rapids 

is a dam, it necessarily follows that John Rapids Dam must reduce flood risk. This is a valid 

deduction even though we know the premise that all dams reduce flood risk is not true. Many 

navigation and hydropower dams are not designed to reduce flood risk. A deduction is sound if 

and only if the deduction is valid and all of its premises are actually true. In the previous 
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example, the argument that John Rapids Dam reduces flood risk is not sound because the 

premise is false. However, both invalid deductions and valid deductions with unsound arguments 

can still have true conclusions. John Rapids Dam might reduce flood risk even though the 

argument is unsound. The conclusion of a deductive argument should not be automatically 

assumed to be untrue because of flaws in its validity or soundness.  

Inductive arguments provide a framework to address issues of truth by supporting certain 

conclusions that are more reasonable to believe than others, but are not certain to be correct. If 

sand boils were observed near the levee toe during the last flood, then it is likely that sand boils 

will be observed during the next flood. We can’t know this for certain, but our conclusion is 

rationally supported by the available evidence (and first principles of soil mechanics). The 

conclusion of an inductive argument becomes more likely to be true as more supporting evidence 

is obtained. As a simple example, consider a box containing 100 piezometers. Without looking 

inside the box, we begin to pull piezometers out. The first few piezometers we pull out are 

broken. At what point would you conclude that most of the remaining piezometers are also 

broken? Our confidence that this conclusion is true will increase as we remove and test more 

piezometers. We might consider other evidence to bolster our conclusion, such as observing 

damage to the box or witnessing the delivery person dropping the box. The more evidence we 

obtain, the stronger we believe in our conclusion. In practice, the amount of evidence will be 

limited and we must rely on the judgment and experience of experts. 

Because induction is not an exact science and evidence is often limited, errors in reasoning can 

occur and it is possible to reach wrong conclusions. Recognizing and mitigating issues that 

introduce reasoning errors (e.g. overestimating the strength of evidence, overconfidence in expert 

judgment, group think, misplacing burden of proof, and many others) can strengthen inductive 

arguments. The validity of inductive conclusions must be evaluated against alternative 

conclusions to determine how strong they are. Decision makers often use objective standards to 

compare alternatives and assess whether a particular course of action is preferred over another.  

In practice, both deductive and inductive arguments are necessary for a credible systematic 

approach to risk analysis. Deduction can provide absolute proof for a conclusion, but the 

premises can rarely be tested and verified to be actually true. Induction is driven by the available 
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evidence, but proof of a theory cannot be obtained. Risk analysis requires a careful synthesis of 

these two logical approaches. 

A-1.3  Set Theory 

Many of the characteristics of a risk analysis problem can be described and modeled using sets. 

Set theory is a branch of mathematics that deals with the properties and relationships of 

collections of elements or events. Risk analysis relies on set theory to provide a logical 

framework for the analysis of events and the relationships between or among a collection of 

events. 

A set is a well-defined collection of unique elements or events. The sample space for a set 

includes all possible outcomes of a random trial or experiment. For example, a random trial or 

experiment might be a levee exposed to a flood loading. The sample space for this trial might be 

represented by a set containing two possible events {levee breaches, levee does not breach}. The 

complement of an event A, includes all of the events that are not A. The complement of A can be 

denoted as A’, AC, or Ā. For the levee example, the complement of {levee breaches} would be 

{levee does not breach}. Events are mutually exclusive when they cannot occur during the same 

random trial or experiment. The events {levee breaches} and {levee does not breach} are 

mutually exclusive because both cannot occur. Events are collectively exhaustive when at least 

one of the events must occur during a random trial or experiment. The collectively exhaustive 

events for levee performance would be {levee breaches, levee does not breach}. The union of 

two (or more) events, denoted by A ∪ B, is the set that includes all outcomes that are either A or 

B or both. Given two potential failure modes, the union, expressed as PFM1 ∪ PFM2, would be 

the set {PFM1, PFM2, PFM1 and PFM2}. The intersection of two (or more) events, denoted by 

A ∩ B or AB, is the set of all outcomes that include both A and B. For the two potential failure 

mode example, the intersection, expressed as PFM1PFM2, would be the set {PFM1 and PFM2}. 

When the events are mutually exclusive, the intersection is an empty or null set containing no 

elements, {}.   

Consider the following example: A flood-overtopping potential failure mode developed by a risk 

analysis team for an embankment dam forming a pumped storage reservoir consists of three 
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events: A, a flood occurs; B, the reservoir elevation exceeds the available freeboard; and C, a 

breach occurs. In order for failure to occur by this potential failure mode, all three of these events 

must occur. Failure of the dam for this potential failure mode can be described as the intersection 

of the three events (ABC). A second flood overtopping potential failure mode developed by the 

risk analysis team could result in overtopping and breach due to misoperation of the pumps 

without the occurrence of a flood. The potential failure modes of flood overtopping (PFM1) and 

misoperation (PFM2) are themselves events, whose occurrence or nonoccurrence can be used to 

describe the state of the system. Assuming no other potential failure modes are plausible, the 

normal state of the system could be described by the intersection event PFM1’ ∩ PFM2’ (neither 

failure mode occurs). Recall that PFM1’ is the complement meaning that the failure mode does 

not occur. The intersection events PFM1 ∩ PFM2’ (meaning only PFM1 occurs), PFM1’ ∩ 

PFM2 (meaning only PFM2 occurs), and PFM1 ∩ PFM2 (meaning both PFMs occur) represent 

three possible failure states for the dam. 

A-1.4  Venn Diagrams 

The basic concepts of set theory can be illustrated using Venn diagrams. A sample space is 

typically represented by a rectangle. Events and their relationships are normally depicted on the 

Venn diagram by overlapping circles or other closed shapes within the sample space. The Venn 

diagrams in  

Figure A-1-1 summarize some basic set theory concepts and operations. Venn diagrams can be 

developed for a risk analysis to obtain a better depiction and understanding of the relationship 

between events to support constructing event trees, estimating probabilities, or combining and 

portraying risks. For example, the relationships between or among multiple potential failure 

modes can be illustrated using Venn diagrams and described using set theory. 
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Figure A-1-1 Set Theory Concepts and Operations 

A-1.5  Combinatorics 

Combinatorics is a branch of mathematics that includes the study of the enumeration, 

combination, and permutation of set elements. Risk analysis can utilize combinatorics to identify 

relevant outcomes from a set of possible events. 

A-1.5.1  Permutation with Repetition 

If each event outcome can be realized more than once and the order of the events does not 

matter, then the number of permutations is nk where n is the number of event outcomes available 

to choose from and k is the number of events that occur. In a river system with two dams and one 

levee, there are eight permutations for performance of the system. The number of outcomes for 

each facility is n=2 {breach, no breach} and the number of facilities is k=3 {dam1, dam2, levee}.  
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The same eight permutations can be also obtained using the binomial coefficient equation below. 

The equation can be solved in Microsoft Excel using the formula =COMBIN(i,j). Pascal’s 

triangle can also be used as a graphical solution of the binomial coefficient. 

(
𝑖
𝑗
) =

𝑖!

𝑗! (𝑖 − 𝑗)!
 

Equation A-1-1 

 

where i! is the factorial of i, 1x2x3…xi. Given the three potential failure modes (j=3), there is 1 

combination of zero (i=0) failures, 3 combinations of one (i=1) failure, 3 combinations of two 

(i=2) failures, and 1 combination of three (i=3) failures. The eight permutations for this example 

are summarized in Table A-1-1. Once the possible events are enumerated, the analyst can 

evaluate and decide which of these scenarios might be important and relevant for a risk analysis.  

A similar evaluation can be made for an individual dam or levee to enumerate combinations 

when there is more than one potential failure mode. The number of outcomes for an individual 

dam or levee is still n=2 {breach, no breach}. The number of events (k) is equal to the number of 

potential failure modes. An individual levee with three potential failure modes would have eight 

combinations. 

Table A-1-1 Example of Permutation with Repetition 

Permutation Performance for Dam 1 Performance for Dam 2 Performance for Levee 

1 No Breach No Breach No Breach 

2 Breach No Breach No Breach 

3 No Breach Breach No Breach 

4 No Breach No Breach Breach 

5 Breach Breach No Breach 

6 Breach No Breach Breach 

7 No Breach Breach Breach 

8 Breach Breach Breach 
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A-1.5.2  Permutation Without Repetition 

If each event outcome can be realized only once and the order of the events does matter, then the 

number of permutations within a subset of m events is 
𝑖!

(𝑖−𝑚)!
 where i is the total number of 

events. For example, permutation number five from the previous example in Table A-1-1 could 

have six additional permutations (i=m=3) if the order of the events is important. Perhaps the 

consequences are different depending on which dam breach occurs first and whether or not the 

levee overtops before or after a dam breaches. The six additional permutations are listed in Table 

A-1-2. Once the possible events are enumerated, the risk analyst can evaluate and decide which 

of these scenarios might be important and relevant for a risk analysis. Perhaps the order in which 

the breaches occur affects consequences but the order of non-breach events does not. This might 

lead to a conclusion that permutations 5-1 and 5-3 are relevant for the risk analysis and the rest 

can be screened out.    

Table A-1-2 Permutation Without Repetition Example 

Permutation First Event Second Event Third Event 

5-1 Dam 1 Dam 2 Levee’ 

5-2 Dam 1 Levee’ Dam 2 

5-3 Dam 2 Dam 1 Levee’ 

5-4 Dam 2 Levee’ Dam 1 

5-5 Levee’ Dam 1 Dam 2 

5-6 Levee’ Dam 2 Dam 1 

Levee’ means the levee does not breach 

A-1.6  Probability 

A-1.6.1  Axioms 

Probability theory is founded on three axioms that have been attributed to Andrei Kolmogorov. 

The first axiom states that the probability of an event (A) is a non-negative real number. The 

second axiom states that the probability of an event that is certain to occur is equal to one. The 

third axiom (sometimes referred to as the addition rule) states that the union of two or more 

mutually exclusive events is equal to the sum of the probabilities for each event. The axioms are 

summarized by the three equations below. 
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First Axiom:     P(A) ≥ 0 

Second Axiom:     P(S) = 1 

Third Axiom:     P(A U B) = P(A) + P(B) 

The third axiom can be expressed as a multiplication rule instead of the addition rule. In practice, 

it makes no difference because all of the remaining probability formulas can be derived from 

either set of axioms. The multiplication rule can be expressed using the equation below.  

Multiplication Rule:     P(A ∩ B) = P(A) P(B|A) 

In the above equation, P(B|A) is the conditional probability of event B given that event A occurs. 

In a risk analysis, this might correspond to the probability that a levee will breach given that a 50 

year flood occurs, expressed as P(Breach | 50 Year Flood). Note that the Annualized Failure 

Probability (AFP) is calculated using the multiplication rule as the intersection probability of the 

events that comprise a potential failure mode. 

A-1.6.2  Interpretation 

Frequency and degree-of-belief describe two broad interpretations of probability. In practice, 

probability estimates used in risk analysis are based on degree-of-belief. Frequency based 

probabilities can be used to inform these degree-of-belief probability estimates. Both 

interpretations of probability are useful in risk analysis and both follow the same probability 

calculus. 

Frequency probabilities are based on a stable frequency for the occurrence of an event over a 

long sequence of trials. Frequency probabilities can also be estimated based on the physical 

properties of a system. The frequency of rolling a 2 using a 6 sided die should be 1/6. This can be 

estimated directly by rolling the die many times or indirectly by concluding the die is fair based 

on its physical properties. Similarly, observations can be used to estimate probabilities for a dam 

or levee risk analysis. If damage to clay tile drains has been observed at 50 out of 100 dams 

inspected, then a risk analyst might estimate the probability of clay tile drain damage at the dam 
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under consideration to be about 50% as long as the conditions at the dam being evaluated are 

reasonably consistent with the conditions at the inspected dams. Without a physical basis like the 

fair die example, a sufficient number of observations is required to obtain a reasonably accurate 

probability estimate. 

Degree-of-belief probabilities are based on a rational weighting of evidence that can be 

manifested by a willingness to take a particular action, to bet at particular odds, or to consider 

particular odds as fair. Personal experience, expert judgment, and other manifestations of 

deductive and inductive reasoning can be used as a basis for estimating degree-of-belief 

probabilities. For example, a degree-of-belief interpretation might arrive at the same probability 

of 1/6 for rolling a 2 based on the available evidence (assumption that the die is fair, visual 

observation of the die characteristics, measurement of the die properties, or past experience with 

similar looking die). Similarly, an expert might combine their general knowledge of the internal 

erosion mechanism (physics of the process, more likely and less likely factors, knowledge of past 

incidents) with the specific characteristics of an embankment dam (construction practices used, 

soil properties, location of the phreatic surface) to estimate the probability of internal erosion 

initiation under a particular loading.   

A-1.6.3  Uncertainty 

Two general types of uncertainty can be described as aleatory (natural variability or randomness) 

and epistemic (knowledge uncertainty). Aleatory uncertainty characterizes processes that are 

assumed to be random in time or space. The occurrence of floods might be assumed to be 

random in time and the spacing of joints in a bedrock foundation might be assumed to be random 

in space. In practice, aleatory uncertainty is treated as irreducible. In other words, there is no 

practical way to reduce the uncertainty through the acquisition of more knowledge. Epistemic 

uncertainty characterizes our lack of knowledge regarding the state of nature. A possible 

foundation flaw either exists or does not exist, but we don’t have sufficient knowledge to 

determine for certain whether or not the flaw exists. Epistemic uncertainty considers the 

uncertainty in both models and model parameters. Uncertainty in modeling includes our ability 

to identify a proper model, the ability of the model to represent reality, and our understanding of 

how the model may be changing over time. Uncertainty in model parameters includes our ability 
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to identify the appropriate representative parameters and consistently estimate values for the 

parameters through observation or measurement. In practice, epistemic uncertainty is treated as 

reducible. In other words, more knowledge can be obtained to reduce the magnitude of the 

uncertainty. Additional exploration could reduce uncertainty in the possible presence of a 

foundation flaw. These uncertainty concepts are applicable not only to risk analysis models and 

risk estimates but also to decision making processes. 

A-1.6.4  Expressing Probability 

Probability estimates can be expressed as a percent (10% chance), as a fraction (1/10 chance), as 

a decimal (0.1 probability), or as odds (1:9). Each of these four values has the same probability 

and the same meaning. Probabilities that apply to an annual time period can be expressed as an 

annual exceedance probability (AEP). This is common for the characterization of flood and 

seismic hazards. Probabilities can also be defined as a function of time to describe temporal 

processes such as climate change or degradation (e.g. corrosion).  

A-1.6.5  Random Variables 

A random (or stochastic) variable is used to represent an uncertain quantity whose value can take 

on a number of possible values. The uncertainty associated with the random variable could be the 

result of natural variability or a lack of knowledge. Despite the name, random variables do not 

necessarily have to describe a random process. For example, the magnitude of a spring flood 

might be modeled as a random process that varies from year to year, whereas a fault in the dam 

foundation might be modeled as a lack of knowledge. We do not know whether or not it exists. 

Both of these scenarios can be described using random variables. The flood might be described 

by a range of peak discharge values and the presence of the fault might be described by two 

scenarios, either ‘yes, it exists’ or ‘no, it does not exist’. 

A-1.6.6  Combining Probabilities (Union of Two or more Events) 

The probability for the union of two (or more) events is a common calculation in risk analysis. It 

is used to sum probabilities and risks across multiple hazards, event tree branches, and potential 

failure modes. 
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A general equation for calculating the probability of the union of two events is shown below. 

The summation of the three terms contained within the {} brackets represent the probabilities for 

the occurrence of event A only, the occurrence of event B only, and the occurrence of events A 

and B. The equation can be expanded for three or more events. The number of terms needed in 

the equation is equal to 2n-1, where n is the number of events. The calculation becomes more 

cumbersome and complex as the number of events increases. 

𝑃(𝐴 ∪  𝐵) = {𝑃(𝐴) − 𝑃(𝐴 ∩ 𝐵)} + {𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵)} + {𝑃(𝐴 ∩ 𝐵)} 

For only two events, a simplified form of the same equation is more commonly found in the 

literature. 

𝑃(𝐴 ∪  𝐵) =  𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴)𝑃(𝐵) 

Two (or more) events are mutually exclusive when both events cannot occur in the same 

experiment or trial. The equation below for the probability of the union of two mutually 

exclusive events is the same as the third probability axiom. 

𝑃(𝐴 ∪  𝐵) = 𝑃(𝐴) + 𝑃(𝐵) 

This equation can also be obtained from the general union equation by recognizing that 

P(𝐴 ∩ 𝐵) = 0 for mutually exclusive events. If the events A and B cannot both occur, then the 

probability of the event AB must equal zero. 

Three ways the union calculation is applied in a risk analysis are as follows. First, event tree 

branches are, by definition, mutually exclusive events. This allows one to simply sum 

probabilities and risks across branches to obtain a total risk estimate for all loadings and PFMs 

included in the tree. Second, floods and earthquakes are typically modeled as mutually exclusive 

events in a risk analysis. This allows estimating the risks separately for each hazard and then 

summing them to obtain a total risk estimate. This simplifying assumption is not strictly true, and 

may not be appropriate or valid in every situation, but it is typically reasonable to assume that the 

probability of a major earthquake occurring coincident with a major flood is negligible. Third, 
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potential failure modes resulting from a particular loading are often modeled as mutually 

exclusive events in a risk analysis. This provides a basis for estimating risks for individual PFMs 

in separate event trees and then summing the estimates to obtain a total risk estimate. Strictly 

speaking, hazards and PFMs are not mutually exclusive. This is merely a simplifying assumption 

that can be made when the joint probability [i.e. P(A)P(B)] and associated consequences of the 

intersection event is relatively small [i.e. P(A)P(B) << 𝑃(𝐴 ∪  𝐵)] such that the intersection 

event can be omitted from the risk analysis. When events cannot be reasonably modeled as 

mutually exclusive, the general union equation can be used. 

A-1.6.7  Combining Probabilities (Intersection of Two or more Events) 

The probability for the intersection of two (or more) events is a common calculation in risk 

analysis. It represents the probability that both events occur and is used to multiply probabilities 

to obtain the probability for the outcome of a sequence or collection of events. This is the basis 

for multiplying probabilities along event tree pathways and for multiplying probabilities for the 

sequence of events associated with a potential failure mode. For example, a breach can occur 

only if all of the underlying events that define the potential failure mode occur. The probability 

of breach can be calculated as the product of the probabilities for the underlying events that 

define the PFM.  

A general equation for calculating the probability of the intersection of two events is shown 

below. This is the third probability axiom expressed as the multiplication rule. The two terms 

represent the probability that event A occurs multiplied by the probability that event B occurs 

given that event A occurs. The equation can be expanded for three or more events. The number 

of terms needed in the equation is generally equal to the number of events. 

𝑃(𝐴 ∩  𝐵) =  𝑃(𝐴)𝑃(𝐵|𝐴) 

Two (or more) events are statistically dependent if the occurrence of one event affects the 

occurrence probability of the other event(s). This is why the second term in the general equation 

is P(B|A). This is the probability that B occurs given that A occurs. In a typical event tree, this 

might be the probability that internal erosion initiates given a particular flood loading occurs. 

The intersection probability for the flood loading and initiation would be the probability of the 
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flood load multiplied by the probability of initiation given (i.e. conditional on) the flood load. 

The probability of initiation depends on the magnitude of the flood load. 

Two (or more) events are statistically independent when the occurrence of one event does not 

affect the probability for the other event(s). When events are independent, P(B|A) = P(B). Event 

A does not influence the probability of event B occurring. Potential failure modes are typically 

estimated assuming they are statistically independent. This is an assumption that simplifies the 

estimation of risk. Strictly speaking, this may not always be a valid simplifying assumption. For 

example, a spillway erosion potential failure model might reduce the likelihood of an 

overtopping failure mode. If spillway erosion occurs, the outflow might increase making 

overtopping less likely.  

A-1.6.8  Combining Probabilities (DeMorgan’s Rule) 

A common formula used to calculate a total probability is derived from DeMorgan’s rule. 

Examples include calculating the total probability of failure given multiple PFMs or calculating 

the probability of flooding over a 30-year mortgage period. For two events A and B, 

DeMorgan’s rule states that the complement of the union of the two events is equal to the 

intersection of their complements. This can be expressed by the equation below. 

(𝐴 ∪ 𝐵)′ = 𝐴′ ∩ 𝐵′ 

The Venn diagrams shown in Figure A-1-2 provide a conceptual derivation of DeMorgan’s rule.  
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Figure A-1-2 DeMorgan’s Rule 

In practice, DeMorgan’s rule can be applied to simplify some risk analysis calculations. For 

example, the total probability of failure for a system with n PFMs can be calculated using the 

equation shown below. This can simplify the calculation of total risk when the number of 

potential failure modes is greater than two. Recall that the union equation becomes cumbersome 

when there are more than two events (in this case more than two PFMs). A conceptual derivation 

of the total probability equation using DeMorgan’s rule is shown in Figure A-1-3. 
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Figure A-1-3 Application of DeMorgan’s Rule 

A-1.6.9  Combining Probabilities (Uni-Modal Bounds) 

The unimodal bounds theorem (Ang and Tang, 1984) states that for ‘n’ positively correlated 

events (E1, E2, E3, …, En) with corresponding probabilities [P(E1), P(E2), P(E3), …, P(En)], the 

total probability for the union of the events [P(E) = P(E1 ⋃ E2 ⋃ E3 …⋃ En)] lies between the 

upper and lower bounds given by the following equation. 

max [P(E1), P(E2), P(E3), … , P(En)] ≤ P(E) ≤ 1 −∏[1 − P(Ei)]
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The upper bound on the right side of the equation is based on a calculation of the total 

probability of system failure using DeMorgan’s rule. The lower bound on the left side of the 

equation is based on the individual event with the largest probability. Events that are correlated 

will yield a total probability closer to the lower bound. Events that are uncorrelated will yield a 

total probability that is closer to the upper bound. In practice, the degree of correlation can be 

difficult to estimate. It is common for risk analysts to assume the upper bound value. This 

assumption may not be appropriate in all situations.   

A-1.6.10  Combining Probabilities (Central Limit Theorem) 

When statistically independent random variables are summed, the distribution of the sum will 

trend toward a normal distribution even if the distributions of the variables being summed are not 

normal. When statistically independent random variable are multiplied, the distribution of the 

product will trend toward a log-normal distribution even if the distributions of the variables 

being multiplied are not normal. This is why the distribution of C-D (capacity minus demand) in 

a reliability analysis will typically trend toward a normal distribution. The annual probability of 
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failure for a potential failure mode will also typically trend toward a normal distribution because 

the end branches of an event tree are summed to obtain the total. The distribution for factor a 

safety (C/D) will typically trend toward a log-normal distribution because capacity is divided by 

demand. The end branches of an event tree will also typically trend toward a log-normal 

distribution because probabilities along an event tree pathway are multiplied.  

A-1.7    Statistics 

A-1.7.1  Probability Distributions 

The event described by a particular value (or range of values) of a random variable must be 

expressed with an associated probability. Probability distributions can be used to describe the 

probabilities associated with the possible values of a random variable. For example, we can 

estimate a probability distribution for the annual maximum ground acceleration at a dam site, the 

permeability of a sand layer in a levee foundation, the system response for a potential failure 

mode, or the effectiveness of an evacuation warning. Virtually all parameters considered and 

applied in a risk analysis have some degree of uncertainty and are therefore candidates to 

consider modeling them as random variables. 

Random variables can be discrete or continuous. Discrete random variable can have a finite 

number of possible values (e.g. number of monoliths that breach). Continuous random variables 

can have an infinite number of possible values (e.g. peak ground acceleration at a levee). For 

discrete random variables, a probability of occurrence can be estimated and assigned to each of 

the possible outcomes. The number of spillway gates that fail to open on demand could be 

modeled as a discrete random variable. A probability mass function (PMF) is commonly used to 

describe the probability distribution for a discrete random variable. A possible probability mass 

function for the spillway gates is shown in Figure A-1-4. The probability that exactly one gate 

does not open can be obtained directly from the probability mass function as about 0.35. The 

probability that zero or one gate does not operate can be obtained by summing the probability 

mass for zero and one gate which would be about 0.53+0.35=0.88. The probabilities for all of the 

gate scenarios must sum to 1.0 to satisfy the probability axioms.  
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Figure A-1-4 Probability Mass Function for a Discrete Random Variable 

A cumulative distribution function (CDF) is another way to describe the same probability 

distribution for the spillway gates. The cumulative distribution describes the probability that the 

random variable is less than or equal to a particular value. The cumulative distribution function 

for the spillway gates is shown in Figure A-1-5. The probability that exactly one gate does not 

open can be obtained from the cumulative distribution function. The probability of 0.88 for one 

gate or less includes the events {0 gate, 1 gate}. The probability of 0.53 for zero gates includes 

the event {0 gate}. The difference between these two probabilities is the event for exactly one 

spillway gate {1} which has a probability of about 0.88-0.53=0.35. This is the same value that 

was estimated previously from the probability mass function. The probability that zero or one 

gate does not operate, which is equivalent to less than or equal to one gate on the cumulative 

distribution, can be obtained directly as about 0.88. The probability of six or less gates must 

equal one to satisfy the probability axioms.  
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Figure A-1-5 Cumulative Distribution Function for a Discrete Random Variable 

Continuous random variables can take on an infinite number of possible values. For example, the 

thickness of a sand layer in a levee foundation might take on any value greater than or equal to 

zero. A probability density function (PDF) can be used to describe the probability distribution for 

continuous random variables. A possible probability density function for sand layer thickness is 

shown in Figure A-1-6. 
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Figure A-1-6 Probability Density Function for Continuous Random Variable 

The probability that the thickness will fall between two particular values can be obtained from 

the probability density function as the integral (or area) between the two values. This is shown 

graphically in Figure A-1-7 and expressed mathematically with the following equation. 

𝑃(𝑎 < 𝑋 ≤  𝑏) = ∫𝑓𝑋(𝑥)𝑑𝑥

𝑏

𝑎

 

Equation A-1-2 

In the example, the probability that the sand layer thickness is between 75 and 85 feet is equal to 

0.68. The probability for any specific value (say a thickness of exactly 80 feet) is equal to zero 

for any continuous random variable. The units on the vertical axis are a density (not a 

probability). This is why continuous random variables, such as those typically used to 

characterize flood or seismic hazard, must be evaluated in a risk analysis using partitions (also 

commonly referred to as load ranges or load intervals). The total area under a probability density 

function must equal one to satisfy the probability axioms.  

0

0.02

0.04

0.06

0.08

0.1

60 70 80 90 100

P
ro

b
ab

ili
ty

 D
en

si
ty

Sand Layer Thickness (feet)

Probability Density Function



A-1-21 

 

 

Figure A-1-7 Probability Density Function for a Continuous Random Variable 

Continuous random variables can also be described by a cumulative distribution function. The 

cumulative distribution describes the probability that the random variable is less than or equal to 

a particular value. This is the integral of the probability density function over all values less than 

or equal to the value of interest. The integral can be expressed mathematically with the following 

equation. 

𝑃(−∞ < 𝑋 ≤  𝑏) = ∫𝑓𝑋(𝑥)𝑑𝑥

𝑏

−∞

 

Equation A-1-3 

A possible cumulative distribution function describing the system response for a potential failure 

mode at a dam is shown in Figure A-1-8. The probability that the dam will breach when 

subjected to a peak water load of 1500 feet is equal to the probability that the capacity (or 

strength) of the dam is less than or equal to the demand (or load). In this example, the probability 

of failure is 0.16. The cumulative probability function must have an upper bound of one to 

satisfy the probability axioms.  

0

0.02

0.04

0.06

0.08

0.1

60 70 80 90 100

P
ro

b
ab

ili
ty

 D
en

si
ty

Sand Layer Thickness (feet)

Probability Density Function

Area = 0.68



A-1-22 

 

 

Figure A-1-8 Cumulative Distribution Function for a Continuous Random Variable 

A survivor function (also called a complementary cumulative distribution function or exceedance 

curve) can be used to describe the probability that a particular value for the random variable will 

be greater than a particular value. For this reason, survivor functions are sometimes referred to as 

exceedance functions. Flood and seismic hazards are typically defined this way. The survivor 

function can be expressed mathematically as an integral of the probability density function with 

the following equation. 

𝑃(−∞ < 𝑋 ≤  𝑏) = ∫𝑓𝑋(𝑥)𝑑𝑥

𝑏

−∞

 

Equation A-1-4 

Greater than is the customary sign convention for survivor functions in the United States with 

one important exception. The F-N chart, which is a survivor function for life loss, is defined as 

the annual probability of life loss greater than or equal to a particular life loss value. 

The survivor function can also be derived from the cumulative distribution function using the 

following equation by recognizing that the survivor function is the complement of the 

cumulative distribution function. For this reason, survivor functions are sometimes referred to as 

complementary cumulative distribution functions. 

0

0.2

0.4

0.6

0.8

1

1450 1550 1650P
ro

b
ab

ili
ty

 o
f 

Fa
ilu

re
P

(C
ap

ac
it

y 
≤
 D

e
m

a
n

d
)

Peak Water Elevation (feet NAVD88)

Cumulative Distribution Function

0.16

1500



A-1-23 

 

𝑃(𝑎 < 𝑋 ≤  ∞) = 1 −  𝑃(−∞ < 𝑋 ≤  𝑎) Equation A-1-5 

A possible survivor function for the seismic hazard at a dam is shown in Figure A-1-9. In this 

example, the probability that the maximum ground acceleration in a given year will be greater 

than 0.2g is equal to 4.6E-3 (about 1 in 220). Recall that the probability of an acceleration 

exactly equal to 0.2g is zero. The probability of an acceleration between 0.1g and 0.2g in a given 

year can be calculated from the survivor function using a loading partition. In this example, the 

probability for a maximum acceleration between 0.1g and 0.2g would be calculated as the 

difference between the AEP for 0.1g and the AEP for 0.2g. (2.3E-2 – 4.6E-3 = 0.018). Strictly 

speaking, an AEP describes the probability of one or more events occurring in a given year. 

However, the probability of more than one event occurring is typically negligible for AEPs less 

than about 0.1 (greater than a 10 year event). Alternative techniques such as partial duration 

series are available when the AEP is greater than 0.1 and the possible occurrence of more than 

one event in a given year is important for characterizing the risk.  

 

 

Figure A-1-9 Survivor Function for a Continuous Random Variable 
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A-1.7.2  Moments 

A moment is a quantitative measure of shape used in both statistics and mechanics. Moments can 

be estimated from observations, measurements, or expert opinion. The first moment is the mean 

(or centroid) which measures the central tendency of data or a distribution. The second moment 

is the variance (or rotational inertia) which measures the amount of spread about the mean. The 

third moment is the skewness which measures the asymmetry about the mean. Equations for 

estimating these moments are provided in Table A-1-3. 

Table A-1-3 Moment Equations 

Moment Meaning Discrete Random Variable Continuous Random Variable 

Mean 

(First) 
Center of Mass �̅� =∑𝑥𝑖𝑝(𝑥𝑖)

𝑛

1

 �̅� = ∫ 𝑥𝑓(𝑥)𝑑𝑥
∞

−∞

 

Variance 

(Second) 
Central tendency 𝜎2 =∑(𝑥𝑖 − �̅�)

2𝑝(𝑥𝑖)

𝑛

1

 𝜎2 = ∫ (𝑥 − �̅�)2𝑓(𝑥)𝑑𝑥
∞

−∞

 

Skew 

(Third) 
Symmetry 𝛾 =

∑ (𝑥𝑖 − �̅�)
3𝑝(𝑥𝑖)

𝑛
1

𝜎3
 𝛾 =

∫ (𝑥 − �̅�)3𝑓(𝑥)𝑑𝑥
∞

−∞

𝜎3
 

 

Other common statistical measures include the median, mode, and geometric mean. The median 

is the 50th percentile of a distribution which means that there is equal probability of a value 

greater than or less than the median. The mode is the most probable value which means that the 

mode has the largest probability mass (discrete) or probability density (continuous). A graphic 

depiction of the mean, median, and mode is shown in Figure A-1-10. 

Additional parameters can be obtained from the set of basic parameters. The standard deviation 

is equal to the square root of the variance. The coefficient of variation is equal to the standard 

deviation divided by the mean. 
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Figure A-1-10 Mean, Median, and Mode 

The geometric mean is defined as the nth root of the product of n data values as shown in the 

equation below. It is typically used to calculate an average value in log space because the 

geometric mean is equal to the exponential of the arithmetic mean of the logarithms.  

𝐺 = (∏𝑥𝑖

𝑛

𝑖=1

)

1

𝑛

= 𝑒
(
∑ ln𝑥𝑛
𝑖=1
𝑛

)
 

Equation A-1-6 

For example, the mean estimate for an SQRA probability estimate between 1E-4 and 1E-5 

should be calculated as a geometric mean using the equation below. The geometric mean is also 

commonly used to calculate the average elevation or acceleration for a load partition because 

flood and seismic hazard curves typically have a logarithmic form.  

𝐺 = (10−4 ∗ 10−5)
1

2 = 3𝑥10−5 
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A-1.7.3  Analytical Distributions 

A multitude of probability distribution are available to describe random variables. Some of the 

more common types which might be useful in a risk analysis include uniform, triangular, normal, 

log-normal, PERT, and Weibull. Other distributions are available and may be more appropriate 

for a particular application. When selecting an analytical distribution, the following list of 

questions can be used as a guide. 

 What distribution provides the best fit? 

 What distribution should be expected? 

 What distributions have fit well in similar situations? 

 What do the experts think? 

 Does it matter? 

The uniform distribution (or rectangular distribution) is a continuous two parameter distribution 

that can be used to describe a range of values that are equally probable. The distribution is 

defined by a lower bound (a) and an upper bound (c). The probability density function has a 

constant value of 
1

𝑐−𝑎
 for any value between a and c. The cumulative distribution function has a 

value of 
𝑥−𝑎

𝑐−𝑎
 for any value x that is between a and c. A uniform distribution is shown in Figure 

A-1-11. 

 

Figure A-1-11 Uniform Distribution 

a c

f(x)

a c

F(x)
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The triangular distribution is a continuous three parameter distribution defined by a lower bound 

(a), a most likely (mode) value (b), and an upper bound (c). The probability density function has 

a value of 
2(𝑥−𝑎)

(𝑐−𝑎)(𝑏−𝑎)
 for a≤x≤b and a value of 

2(𝑐−𝑥)

(𝑐−𝑎)(𝑐−𝑏)
 for b≤x≤c. The cumulative distribution 

has a value of 
(𝑥−𝑎)2

(𝑐−𝑎)(𝑏−𝑎)
 for a≤x≤b and a value of 1 −

(𝑐−𝑥)2

(𝑐−𝑎)(𝑐−𝑏)
 for b≤x≤c. A triangular 

distribution is shown in Figure A-1-12. 

 

 

Figure A-1-12 Triangular Distribution 

The normal distribution is a two parameter continuous distribution defined by a mean or 

expected value (μ) and a variance (σ2) or standard deviation (σ). The random variable can take 

on any value between -∞ and +∞. Physical quantities that result from a summation of many 

independent processes have distributions that are approximately normal. The probability density 

function for the normal distribution is given by the equation below. The probability density can 

be calculated with Microsoft Excel using the formula =NORM.DIST(x,μ,σ,FALSE). 

𝑓(𝑥) =
1

√2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2  
Equation A-1-7 

The cumulative distribution function for the normal distribution is given by the equation below. 

The cumulative distribution can be calculated with Microsoft Excel using the formula 

=NORM.DIST(x,μ,σ,TRUE). A normal distribution is shown in Figure A-1-13. 

a b

f(x)

c a c

F(x)

b
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𝐹(𝑥) =
1

√2𝜋
∫ 𝑒

−1

2𝑣2

𝑥−𝜇

𝜎

−∞

𝑑 
Equation A-1-8 

 

Figure A-1-13 Normal Distribution 

The log-normal distribution is a two parameter continuous distribution for a random variable 

whose logarithm has a normal distribution. The parameters μ and σ are the mean and standard 

deviation for ln(x). The relationships between these parameters and the mean (m) and standard 

deviation (s) of x is given by the equations below. 

𝜇 = 𝑙𝑛

(

 
𝑚

√1 +
𝑠2

𝑚2)

  

Equation A-1-9 

𝜎 = √𝑙𝑛 (1 +
𝑠2

𝑚2
) 

Equation A-1-10 

The random variable can take on any value between 0 and +∞. Physical quantities that result 

from a product of many independent processes typically have distributions that are 

approximately log-normal. The probability density function for the log-normal distribution is 

given by the equation below. The probability density can be calculated with Microsoft Excel 

using the formula =LOGNORM.DIST(x,μ,σ,FALSE). 

μ

σ

f(x) F(x)

μ
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𝑓(𝑥) =
1

𝑥√2𝜋𝜎2
𝑒
−
(ln𝑥−𝜇)2

2𝜎2  
Equation A-1-11 

The cumulative distribution function for the log-normal distribution is given by the equation 

below. The cumulative distribution can be calculated with Microsoft Excel using the formula 

=LOGNORM.DIST(x,μ,σ,TRUE). A log normal distribution is shown in Figure A-1-14. 

𝐹(𝑥) =
1

√2𝜋
∫ 𝑒

−1

2𝑣2

ln𝑥−𝜇

𝜎

−∞

𝑑𝑣 

Equation A-1-12 

 

Figure A-1-14 Log-Normal Distribution 

The PERT distribution was developed specifically for use in expert elicitation. It is a continuous 

three parameter distribution defined by a lower bound (a), an upper bound (c), and a most likely 

(mode) value (b). The PERT distribution has a smoother shape than the triangular distribution 

and a different mean. It is derived from the four parameter beta distribution with a mean defined 

by the following equation.  

𝜇 =
𝑎 + 4𝑏 + 𝑐

6
 

Equation A-1-13 

 

f(x) F(x)



A-1-30 

 

The probability density function for the PERT distribution is given by the equation below.  

𝑓(𝑥) =
(𝑥 − 𝑎)𝛼−1(𝑐 − 𝑥)𝛽−1

𝐵(𝛼, 𝛽)(𝑐 − 𝑎)𝛼+𝛽−1
 

Equation A-1-14 

Parameters for the above equation can be calculated using the equations below. The gamma 

function (Г) can be calculated with Microsoft Excel using the formula =Gamma() 

𝛼 =
4𝑏 + 𝑐 − 5𝑎

𝑐 − 𝑎
 

Equation A-1-15 

𝛽 =
5𝑐 − 𝑎 − 4𝑏

𝑐 − 𝑎
 

Equation A-1-16 

𝐵(𝛼, 𝛽) =
Γ(𝛼)Γ(𝛽)

Γ(𝛼 + 𝛽)
 

Equation A-1-17 

The cumulative distribution function for the PERT distribution is given by the equation below.  

𝐹(𝑥) = 𝐼𝑥(𝛼, 𝛽) Equation A-1-18 

The incomplete beta function (I) can be calculated with Microsoft Excel using the formula 

=BETA.DIST(x,α,β,1,a,c). A PERT distribution is shown in Figure A-1-15. 
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Figure A-1-15 PERT Distribution 

Bathtub curves are commonly used in reliability engineering to describe a change in failure rate 

of electrical or mechanical components over time. The first part of the curve typically has a 

decreasing failure rate and is sometimes referred to as the early failure period. The second part of 

the curve typically has a constant failure rate and is sometimes referred to as the random failure 

period. The third part of the curve typically has an increasing failure rate and is sometimes 

referred to as the wear out period. A bathtub curve can be constructed from the Weibull 

distribution which is defined by a shape (β) and a scale(η) parameter. The probability density 

function for the Weibull distribution is given by the equation below.  

𝑓(𝑥) =
𝛽

𝜂
(
𝑥

𝜂
)
𝛽−1

𝑒
−(

𝑥

𝜂
)
𝛽

 
Equation A-1-19 

The cumulative distribution function for the Weibull distribution is given by the equation below. 

𝐹(𝑥) = 1 − 𝑒
−(

𝑥

𝜂
)
𝛽

 
Equation A-1-20 

The failure rate can be calculated using the following equation. The failure rate decreases with 

time when β<1. The failure rate is constant when β=1. The failure rate increases with time when 

β>1. 

f(x)

a cb

F(x)

a cb
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𝜆(𝑇) =
𝛽

𝜂
(
𝑇

𝜂
)
𝛽−1

 
Equation A-1-21 

The mean time to failure can be calculated using the following equation. 

𝜇𝑇 = 𝜂Γ (
1

𝛽
+ 1) 

Equation A-1-22 

A bathtub curve derived from a Weibull distribution is shown in Figure A-1-16. 

 

Figure A-1-16 Failure Rate (Bathtub Curve) 

A-1.7.4  Confidence Limits and Intervals 

The uncertainty associated with an estimated or sampled value of a random variable can be 

described using confidence limits and confidence intervals. The confidence interval [a,b] for a 

specified degree of confidence (C%) can be calculated based on the equation below. 

𝐶% = (∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

) ∗ 100 
Equation A-1-23 

λ(T)

T
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A confidence limit can be obtained by replacing a in the equation above with the lower bound of 

the distribution. Confidence limits less than 50% are referred to as lower confidence limits. 

Confidence limits greater than 50% are referred to as upper confidence limits. Confidence limits 

and intervals are typically reported based on equal tail probabilities. For example, a confidence 

interval of 90% would typically be calculated based on an upper confidence limit of 95% and a 

lower confidence limit of 5%.  

For example, assume the friction angle for the soils at a particular site are sampled. Based on the 

sample data, the friction angle is believed to fit a normal distribution with a mean of 32° and a 

standard deviation of 1°. The probability (or confidence) that the friction angle is between 30° 

and 33° can be estimated as about 82%. This value is represented by the shaded area under the 

probability distribution in Figure A-1-17. 

There are some philosophical differences between a confidence interval (a frequentist concept) 

and a credible interval (a Bayesian concept). A frequentist confidence interval would mean that 

82% of the confidence intervals computed from repeated samples would contain the true value of 

the Phi angle. The true value is assumed to be a fixed, but unknown, value.  A Bayesian credible 

interval would mean that there is an 82% probability that the parameter of interest (Phi angle) 

has a value between 30° and 33°. The true value is assumed to be a random variable. These 

differences are beyond the scope of this introductory manual and are typically inconsequential in 

practice.  
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Figure A-1-17 Confidence Interval 

A summary of confidence intervals associated with a normally distributed random variable is 

provided in  

Table A-1-4. These confidence intervals are defined as a function of the mean and standard 

deviation.  

 

Table A-1-4 Confidence Intervals for a Normal Distribution 

Confidence Interval Meaning 
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standard deviation from 

the mean 

95% x̄ -2σ ≤ x < x̄ +2σ 

Plus or minus 2 

standard deviations 

from the mean 

99.7% x̄ -3σ ≤ x < x̄ +3σ 

Plus or minus 3 

standard deviations 

from the mean 
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A-1.7.5  Correlation 

Correlation is the degree to which two or more variables are related to each other.  For example, 

standard penetration test (SPT) blow counts might be correlated with the shear strength of soils. 

Higher blow counts might be an indicator of higher shear strengths. Correlation can be used to 

indirectly estimate parameters in a risk analysis. The concept can also be used to provide internal 

consistency between parameters within a risk model. For example, the effectiveness of a flood 

warning might be correlated with the time of day. Correlation alone does not imply or provide 

evidence of causation. A causal connection may exist only when there is a plausible cause and 

effect explanation.  

A commonly used metric for the linear correlation between two variables is the Pearson product-

moment correlation coefficient. Given a series of n measurements for X and Y, the sample 

correlation coefficient can be calculated using the following equation. 

𝑟𝑥𝑦 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)
𝑛
𝑖=1

√∑ (𝑥𝑖 − �̅�)2(𝑦𝑖 − �̅�)2
𝑛
𝑖=1

 
Equation A-1-24 

This correlation coefficient can have a value between -1 and +1. Values closer to -1 and +1 

suggest a stronger linear relationship. Values closer to zero suggest a weaker linear relationship. 

When using these types of metrics, a dose of caution is needed. Figure A-1-18 shows scatter 

plots for Anscombe’s quartet. These are a set of four different sets of data pairs, with each set 

having the same values of mean, variance, correlation coefficient, and regression line, but very 

different appearance. They demonstrate that simple metrics may not always provide a sufficient 

basis for interpreting the data.  
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Figure A-1-18 Correlation Example 

A-1.8  Bayesian Inference 

Bayesian inference relies on Bayes' theorem to express the way in which a degree of belief 

probability should rationally change to account for new evidence. According to Ang and Tang 

(1975), the Bayesian method provides a useful approach when dealing with limited available 

information and when reliance on subjective judgments is necessary. It can be used to inform 

subjective judgments so that the available evidence is not given too much weight or too little 

weight when estimating probabilities. 

The method begins with an estimate of the prior probability of an event based on available 

information. The significance of new information or evidence can then be considered by using 

Bayes' theorem to obtain an updated or posterior estimate of the event probability (Hartford and 

Baecher 2004). To illustrate the concept, it is convenient to start with the general form of Bayes 

theorem using the equation below, where P(x|O) is the posterior probability of an event x given 

an observation O, P(x) is the prior probability of the event x without the observation, P(O|x) is 
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the conditional probability of the observation O given the event x, and P(O) is the probability of 

the observation. 

𝑃(𝑥|𝑂) =
𝑃(𝑥)𝑃(𝑂|𝑥)

𝑃(𝑂)
 

Equation A-1-25 

For example, let’s assume a risk analyst estimates the initial probability for the presence of a 

permeable layer in a levee foundation to be P(x)=0.2, based on general knowledge of the 

regional geology; this is the prior probability. It was further judged that if a permeable layer did 

exist, its extent of the layer would be on the order of 200 feet. To improve the probability 

estimate, an exploration program is undertaken, with borings at 500-foot spacing along the levee 

alignment. No permeable layers are detected by the exploration program; this is the observation, 

O. Assuming that a 200-foot-long permeable layer does exist in a 500-foot reach, the length 

without the permeable layer would be 300 feet, so the probability of not finding it with a 

particular boring is P(O|x) = 300/500 = 0.6. This is the probability of the observation, O (no 

permeable layer detected), given that a permeable layer does exist (x). The total probability of 

not observing a permeable layer includes two possible events: the layer exists and it was not 

observed, or the layer does not exist. The probability that the layer does not exist is the 

complement of the prior probability estimate, 1-P(x)=0.8, and with no layer present, the 

probability of O (no layer detected) is 1.0. The total probability of not observing a permeable 

layer is therefore  

P(O) = 0.2*0.6 + 0.8*1 = 0.92 

Using Bayes' theorem, the updated or posterior probability of a permeable layer in the foundation 

following the exploration program can be calculated as shown below. 

𝑃(𝑥|𝑂) =
0.2 ∗ 0.6

0.92
= 0.13 

In this case, the observation O was consistent with the low prior probability, so it resulted in a 

fairly modest decrease. 
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A-1.9  Monte Carlo Analysis 

Monte Carlo methods cover a broad range of computational algorithms that rely on repeated 

sampling to obtain numerical results. In risk analysis, Monte Carlo analysis is typically used to 

evaluate uncertainties when analytical solutions are difficult or do not exist. Common 

applications include stochastic modeling for hazards, reliability or limit state analysis for PFMs, 

stochastic modeling for consequences, and combining uncertainties for event trees analysis. For 

example, a simple model for estimating the average annual life loss (AALL) might be 

represented by the equation below.  

𝐴𝐴𝐿𝐿 = 𝑃(𝐻𝑎𝑧𝑎𝑟𝑑) ∗ 𝑃(𝐹𝑎𝑖𝑙𝑢𝑟𝑒|𝐻𝑎𝑧𝑎𝑟𝑑) ∗ 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠|𝐻𝑎𝑧𝑎𝑟𝑑 𝑎𝑛𝑑 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 

When the model inputs are deterministic, a single value estimate for AALL is obtained as the 

product of the model inputs. When the model inputs are uncertain or random, the estimate of 

AALL is also uncertain or random. Monte Carlo analysis can be used to estimate the probability 

distribution of AALL. 

The basic steps for any Monte Carlo analysis are listed below. These steps are applicable for use 

with any type of model. Specific applications for Monte Carlo analysis in dam and levee risk 

analysis are presented throughout the manual. 

 Build a model (e.g. event tree calculation for AALL, limit state analysis for factor of 

safety, flood model for peak stage, etc) 

 Assign probability distributions to the model inputs (e.g. uncertainty in branch 

probabilities, uncertainty in material properties, uncertainty in flood frequency)  

 Define correlations among model inputs 

 Sample the model inputs based on their distributions and correlations 

 Run the model 

 Record the model output 

 Repeat for many samples of the model inputs 

  Evaluate the probability distribution for the model outputs 
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